If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+72+100
We move all terms to the left:
0-(-16t^2+72+100)=0
We add all the numbers together, and all the variables
-(-16t^2+72+100)=0
We get rid of parentheses
16t^2-72-100=0
We add all the numbers together, and all the variables
16t^2-172=0
a = 16; b = 0; c = -172;
Δ = b2-4ac
Δ = 02-4·16·(-172)
Δ = 11008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11008}=\sqrt{256*43}=\sqrt{256}*\sqrt{43}=16\sqrt{43}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{43}}{2*16}=\frac{0-16\sqrt{43}}{32} =-\frac{16\sqrt{43}}{32} =-\frac{\sqrt{43}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{43}}{2*16}=\frac{0+16\sqrt{43}}{32} =\frac{16\sqrt{43}}{32} =\frac{\sqrt{43}}{2} $
| 5(3x+9)−2x=15x−2(x−5) | | 12x+9=12x+6 | | (5x+7)=(2x+3) | | 4b-5-27=-16 | | 7(m+4)=7m=140 | | 3(2x+5)-6=2+7x+2(x-11+20) | | 6x-25+(x-42)=4x-(x+13) | | h=-16(2)^2+48(2)+4 | | 6.8/t=34/50 | | (x-4)/3+2=12 | | 5t—9=26 | | -155=6x-7(12x+11) | | 150^=(4x+50)^ | | t=3.5t+4 | | 11=-5x+3+2x-19 | | 10x+4x-8=48 | | 7/14=c/12 | | 4x+9x=-143 | | 5(t+2)-2t=8-(t-7) | | 2a^2-a-66=0 | | 12=4(y-17) | | -9x+6x=54 | | 3p-3p+p+3p=16 | | -1116=-6(10x-14) | | 15w-13w=6 | | 531=9(9x+5) | | 8=-4-x/4 | | 3(2x-5)+1=8x-11 | | -59=-9+10x | | 5x+8=51 | | 10+-2x=20 | | 83=7(-2x+5)-2x |